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Ocean acidification, a consequence of the ocean absorbing about a third of
the anthropogenic carbon dioxide (CO2) emitted into the atmosphere, is poised
to affect biogeochemical cycles and the seawater chemical system. Traditional
research methods, such as field and in situ sampling, are precise and reliable, but
are inherently limited in spatial and temporal coverage and resolution. This article
summarizes remotely sensed products, including air-sea CO2 fluxes, total alkalin-
ity, suspended calcite (particulate inorganic carbon), particulate organic carbon
and calcification rates, which can be used to observe ocean acidification indi-
rectly. Confounding factors and limitations of algorithms are major sources of
errors. This article also discusses remote-sensing algorithms and satellite technol-
ogy developments. Remote sensing, considering its great advantages and successful
applications in climate change, will be an important tool in future studies of ocean
acidification.

1. Introduction

1.1 Background

Increased fossil fuel burning caused by general industrialization, including power
generation, transport and cement production and the land-use changes caused by
agricultural activities have made atmospheric CO2 concentrations increase from
approximately 280 parts per million (ppm) to 387 ppm. This is about a 40% increase
since the beginning of the industrial revolution (Raven et al. 2005, Solomon 2007,
Doney et al. 2009). The atmospheric concentration of CO2 is now higher than that
at any time in the last 800 000 years (Luthi et al. 2008) and will exceed 800 ppm by
the end of the century, according to the ‘business-as-usual’ emission scenario of the
Intergovernmental Panel on Climate Change (IPCC). The oceans, which absorb about
one-third of all anthropogenic carbon emissions from the atmosphere, play an impor-
tant buffering role in slowing the rate of increase in atmospheric CO2 concentration.
However, the increasing CO2 partial pressure (pCO2) in seawater profoundly affects
the marine carbonate system. While atmospheric CO2 has increased from 280 to
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Ocean-acidification-related observations by remote sensing 7543

387 ppm, the average pH of the ocean surface has decreased from approximately
8.21 to 8.10 units. The concentration of carbonic acid (H2CO3) has increased by about
44.4%, bicarbonate anions (HCO−

3 ) by 5% and H+ by about 28.9%, while the concen-
tration of carbonate (CO2−

3 ) has decreased by about 16.2% (Raven et al. 2005). With
the 0.3–0.4 pH drop expected for the twenty-first century, there will be an increase
equivalent to approximately 150% in H+ and a decrease of 50% in CO2−

3 concentra-
tions (Kleypas et al. 2006) (figure 1). Studies under laboratory and field experimental
conditions (table 1) show that ocean acidification is poised to cause major effects on
marine organisms and biological systems. Calcifying organisms are predicted to be
most seriously affected, due to the decreasing calcification caused by elevated CO2.
However, the responses to ocean acidification are expected to differ from one species
to another and even between organisms in different life stages.

So far, most of our understanding of the effects of ocean acidification on the marine
chemical system is derived from field-sampling data. Ship surveys and a growing
number of autonomous moored and underway platforms directly provide accurate
long-term time series for studies and modelling. The first observation of basin-wide
ocean acidification was in the North Pacific Ocean through in situ shipboard sampling.
Comparing pH readings from 1991 to 2006 in Pacific seawater between Oahu, Hawaii
and Kodiak, Alaska, the upper-ocean (depth to 100 m) pH decreased by approxi-
mately 0.026 units over the one-and-half decades, equivalent to an average annual pH
change of −0.0017 (Byrne et al. 2010). Significant upper ocean acidification was con-
cluded to be mostly caused by rising anthropogenic emissions of CO2 (figure 2). From
historical atmospheric CO2 data, ocean surface pH and pCO2 data of the Hawaii
Ocean Time-Series (HOT) station Aloha, the increasing rates from 1990 to 2007 of
oceanic and atmospheric CO2 are seen to be consistent, which indicates that the uptake
of anthropogenic CO2 is a major cause for changes in the marine carbon system
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Figure 1. Changes in the ocean surface carbonate system in response to elevated atmospheric
CO2. Models based on the IS92a scenario of the IPCC report 1995: pH (solid line), CO2
concentration (dashed line) and CO2−

3 concentration (dash dotted line) (Wolf-Gladrow et al.
1999).
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Figure 2. Changes of pH between 1991 and 2006 in the North Pacific Ocean. (a) Vertical pH
of modern North Pacific seawater, at 25◦C; (b) total pH changes; (c) pH change attributed to
the uptake of anthropogenic carbon. �pH = pH2006 – pH1991). Red contours show isopycnal
surfaces. The dashed green line marks the estimated 152◦ W late-winter mixed layer depth and
is roughly equivalent to the average mixed layer depth between the two March cruises (Redraw
after Byrne et al. (2010)).
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Figure 3. Time series of changing atmospheric CO2, ocean surface pH and pCO2 in the sub-
tropical North Pacific Ocean. Atmospheric CO2 (in ppm) is acquired from Mauna Loa, and
pCO2 (µatm) is from Ocean Station ALOHA (Redraw after Doney et al. (2009)).

(Doney et al. 2009) (figure 3(c)). These field-sampling observations provide direct and
detailed knowledge of ocean-acidification processes and promise to be a powerful tool
in future studies.
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1.2 Remote sensing

Ocean acidification occurs on a large scale and is influenced by many environmental
parameters. Direct field measurements are inherently limited in spatial (time series,
moored stations) and/or temporal resolution (ship surveys). Laboratory experimental
measurements cover short time scales, usually ranging from hours to weeks. Besides,
most observations are made on single-species cultures. Under more-natural condi-
tions, the consequences would be different, due to the higher complexity in the ‘real
world’. Remote sensing is a relatively new technology, developing rapidly in recent
decades. It offers an avenue for expanding observations and analysing the temporal
and spatial variability of the global ocean. This article describes observations related
to ocean acidification derived from satellite remote sensing and discusses their appli-
cations. It also surveys the possibilities of the remote sensing on ocean acidification in
the future.

2. Methods

The ocean is one of the major global reservoirs of carbon and a major sink of anthro-
pogenic CO2. The seawater carbonate system is governed by a series of chemical
reactions:

CO2(atmos) ⇔ CO2(aq) + H2O ⇔ H2CO3 ⇔ H+ + HCO−
3 ⇔ 2H+ + CO

2−
3 .

Under typical ocean surface conditions, about 90% of the total CO2 is formed as
HCO−

3 , 9% as LCO2−
3 and only 1% as undissociated CO2(aq) and H2CO3 (Feely et al.

2009). In the ocean carbonic acid system, pH, total alkalinity (AT), total dissolved
inorganic carbon (DIC) and the partial pressure of CO2 in surface seawater (pCO2,sw)
are the four essential parameters for determining changes in seawater properties.
In addition to sea surface temperature (SST) and salinity, at least two, and preferably
three of these carbonate parameters need to be observed to fully describe the seawater
carbonic system at any given depth. Thus, knowing the thermodynamic dissolution
constants and the composition of seawater as a function of salinity, the pH value can
be calculated.

3. Results

3.1 Remotely sensed ocean-acidification-related products

Using remote sensing to monitor and detect seawater pH changes and their impacts on
marine organisms is not feasible at present. However, a host of satellite-derived prod-
ucts, such as air-sea CO2 fluxes calculated based on pCO2,sw, particulate inorganic
carbon (PIC), particulate organic carbon (POC), AT and calcification rates, can con-
tribute valuable information (table 2). Some of these measurements measure the ocean
carbon cycle directly (e.g. air-sea CO2 fluxes, POC and PIC); others measure geo-
biochemical responses to ocean acidification (e.g. AT and calcification rates). Air-sea
exchange is the first step of oceanic CO2 uptake from the atmosphere and activates the
biological pump. The ratio of PIC to POC is thought to be shifted by increasing CO2.

A change in this ratio could affect the ability of the ocean to act as a CO2 sink, form-
ing important feedback in the carbon cycle. The geobiochemical responses are good
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reflections of ocean acidification. Total alkalinity, one of the four essential parame-
ters for determining changes in seawater, could be used as an important element to
calculate the state of the carbonate system. Calcification rates, which are expected to
be affected most severely by ocean acidification, will also be an efficient monitoring
factor in ocean-acidification studies.

Since derived values agree well with the field-sampling data at the surface, con-
centration and distribution from depth have been calculated as well. Integrated POC
reservoirs over certain depth ranges were calculated with empirical algorithms, both
on regional and global scales (Balch et al. 2005, Stramska 2009). Global patterns of
near-surface POC concentration (POCsur) and POC over the euphotic layer (POCzeu)
are found to follow the major gyre systems and other large-scale circulation features.
The mean global value of POCzeu over the global ocean is 3742 mg m−2. The stand-
ing stocks of POC are 3.92 × 1014 g and 1.19 × 1015 g over the first penetration and
euphotic depths, respectively (Duforet-Gaurier et al. 2010). Global total and monthly
calcification rates were generated using MODIS data with an empirical calcification
algorithm based on day length, sample depth, SST, chlorophyll-a (chl-a) concentration
and suspended calcite concentration. The annual calcification rate over the euphotic
depth was estimated at 1.61 Pg C (Balch et al. 2007).

3.2 The experimental Ocean Acidification Product Suite

Satellite products provide us with an indirect way to derive the pH of seawater.
The National Oceanic and Atmospheric Administration (NOAA) Coral Reef Watch
and Atlantic Oceanographic and Meteorological Laboratory have developed the
Experimental Ocean Acidification Product Suite (OAPS) to provide synoptic esti-
mates of sea surface carbonate chemistry in the Greater Caribbean Region (online
at: http://coralreefwatch.noaa.gov/satellite/oa/). The product offers a monthly, 0.25 ×
0.25 synthesis of satellite and modelled environmental data sets, including aragonite
saturation state (�ar), pCO2,sw, AT, carbonate ions and bicarbonate ions (figure 4).
The pCO2,sw is estimated using an empirical model relating the difference between sea
surface and atmospheric CO2 partial pressures to changes in CO2 gas solubility (K0).
Sea surface AT is derived using the empirical relationships describing subtropical sur-
face AT as a function of sea surface salinity (SSS) and SST. Monthly composites of
these AT and pCO2,sw fields are then coupled to derive the carbonic acid system using
the Carbon Dioxide Information Analysis Center (CDIAC) Program for CO2 System
Calculations. The model estimates an increase in dissolved inorganic carbon (DIC)
at a rate of 1.2 µmol kg−1 y−1 and a decline in the annual mean �arg from 4.05 to
3.9 (±0.08), at a rate of 0.012 �arg y−1, from 1996 to 2006 as a consequence of rising
atmospheric CO2 (Gledhill et al. 2008).

3.3 Errors for remote sensing of ocean acidification

Several important input variables, such as chl-a and SST, have been derived from satel-
lite data for many years, and SSS is also now available. The SSS products derived from
the Soil Moisture and Ocean Salinity Satellite (SMOS), which was launched by the
European Space Agency in 2009, could reach a precision of 0.1–0.2 psu (Font et al.
2004). Remote-sensing algorithms giving ocean-acidification-related products are still
being developed. The precision of these indirect observations are not as high as direct
field measurements (table 2) but could meet analysis needs in regions where the algo-
rithms are well developed. The OAPS programme is a useful attempt to observe ocean
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Figure 4. Distribution of OAPS products for August, 2010. (a) Aragonite saturation state,
(b) pCO2,sw (µatm), (c) total alkalinity (µmol kg−1) and (d) carbonate ion ((µmol kg−1). NOAA
Coral Reef Watch Ocean Acidification Product Suite Version 0.2 preliminary across the Greater
Caribbean Region (from http://coralreefwatch.noaa.gov/satellite/oa).

acidification with remotely sensed data. Sea surface carbonate chemistry parame-
ters were evaluated against the averaged collected measurements from geochemical
cruises from 1997 to 2006. The mean sea surface pCO2,sw, modelled with an empiri-
cal relationship using in situ pCO2,sw, SST, SSS and sea-level barometric pressure, was
374 ± 15 µatm compared to the mean ship-measured pCO2,sw of 372 ± 18 µatm (n =
20 141). The mean modelled AT value was 2735 ± 36 µmol kg−1 compared to the
mean ship-measured value of 2366 ± 77 µmol kg−1. The mean-modelled sea surface
�ar, calculated from monthly composites of the daily pCO2,sw, AT, SST and SSS fields
using the CO2SYS programme, was 4.00 ± 0.10 compared to the mean ship-measured
value of 4.01 ± 0.17 (Gledhill et al. 2008) (figure 5).

4. Discussion

4.1 Sources of errors

Confounding factors may strongly affect the precision of the remotely sensed obser-
vations. In particulate inorganic carbon (PIC) algorithms, differences in water mass
and particle types and mean changes in the background backscattering may affect the
satellite-derived results. In coccolithophore blooms, examined by a three-band algo-
rithm, agreement between the backscattering coefficient at 546 nm and the detached
coccolith concentration would increase by 5% after assuming the chl-a concentration
in the blooms to be 1 mg m−3 rather than zero (Gordon et al. 2001). Background chl-a
concentration should also be considered in POC algorithms and should be developed
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Figure 5. Bias between the OAPS modelled values and co-located ship-measured values.
� stands for the maximum and minimum values, stands for the mean value and �� stands for
values ranging from 1% to 99% of the total values (modified from http://coralreefwatch.noaa.
gov/satellite/oa).

separately according to water trophic status (oligotrophic, mesotrophic or eutrophic
conditions).

As most of the remotely sensed products are derived using empirical algorithms
and are, thus, inherently limited by the input data set, the validity of these algorithms
outside their data domain is not well known. For example, results from an algorithm
developed from SST agree well (root mean square (RMS) deviation of ± 17 µatm)
with that in the subtropical North Pacific, since the pCO2 there is controlled primarily
by temperature. However, in the northwestern subpolar region, pCO2 is controlled
by temperature and also shows significant seasonal change, and this algorithm gives
poorer results (RMS deviation of ± 40 µatm) (Stephens et al. 1995). In the future, the
analysis approach and models should be developed to overcome these shortcomings.

4.2 Future developments for remote sensing of ocean acidification

Remotely sensed products and the OAPS programme provide an indirect way to mon-
itor chemical changes in seawater and offer a first significant step to observe ocean
acidification. However, problems (e.g. immaturity of the algorithms in the OAPS sys-
tem and the low spatial resolution of the products) still exist. Future work needs to
focus on three issues:

4.2.1 Algorithm development. Present marine carbonate algorithms are too imma-
ture to be used widely and accurately. The basic chemistry of seawater is still not fully
understood, so the impact factors in an algorithm may be only partly considered.
Besides, as empirical regression algorithms are inherently limited in accuracy, derived
results may not agree well with observed data and may give major errors outside spec-
ified conditions. More analytical or semi-analytical approaches should be developed
to improve precision and to extend the application of satellite products.
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4.2.2 Remote-sensing algorithms. Considering that pCO2, AT, DIC and pH are four
essential parameters to understand marine carbon chemistry and that algorithms exist
for only two (pCO2 and AT), remote-sensing algorithms for the other two parameters
(DIC and pH) should also be derived to verify results. Such work has been started.
An empirical relationship between salinity (S)-normalized total inorganic carbon CT

(NCT = CT × 35/S), SST and nitrate (NO−
3 ) in the form of NCT = a + b×SST +

c × SST2 + d × NO−
3 was determined from CT measurements made in major ocean

basins (Lee et al. 2000). Input parameters are SST and nitrate, of which SST could
be obtained accurately, and nitrate algorithms are being developed (Goes et al. 2000,
Silio-Calzada et al. 2008). Since CT is made up of PIC and DIC and satellite PIC
algorithms are available, it is possible to obtain DIC contribution in surface water.
A direct pH algorithm was derived using measured surface seawater pH, SST and
chl-a data sets over the North Pacific: pH (total hydrogen scale at 25◦C) = 0.01325
× SST – 0.0253 × chl-a + 4.150 (R2 = 0.95, p < 0.0001, n = 483) (Nakano and
Watanabe 2005). The mean difference between measured and predicted pH was 0.006
± 0.022 pH; thus, the spatiotemporal distribution of pH over the North Pacific could
be determined using this algorithm.

4.2.3 New satellite technology. This refers to two aspects.

1. Techniques for measuring the inorganic carbon system in seawater (e.g. AT,
DIC and pCO2) could improve sensitivity, accuracy and precision. Balch and
Fabry (2008) noted two recent optical advances. The first is the lidar technique,
which can be used to measure the vertical distribution of optically scatter-
ing particulate matter over the euphotic zone. The second is the Multiangle
Imaging Spectroradiometer (MISR) instrument on the NASA Terra satellite.
This measures reflectances at incidence angles ranging from −70◦ to 70◦, which
could help improve atmospheric correction and better determine the anisotropic
properties of light reflectance from the sea.

2. Seawater pH affects ultrasonic wave transmission in the water column. This pro-
vides a possible direct way to derive pH. As direct measurements from a satellite
sensor should be the most accurate means to monitor ocean acidification,
efforts should focus on possible sensor design. Some developed counties, such
as the USA, intend to develop new satellite technologies to monitor and detect
ocean-acidification-related ecological changes, and it is reported that new instru-
ments will be put into use over the next 5–10 years (Ocean Carbon and
Biogeochemistry Program Subcommunity 2009).

5. Concluding remarks

Oceans absorb one third of anthropogenic carbon emissions from the atmosphere.
This will cause great change, both in the seawater chemical system and in the marine
ecosystem. Growing efforts are being made in ocean-acidification research, mostly on
in situ measurements, laboratory experiments and model simulations. These measure-
ments provide us with the most-accurate means to observe and understand ocean
acidification, but inherent limitations exist. Some remotely sensed products, includ-
ing air-sea flux, PIC, POC, AT and calcification rate, could be indirectly observed
for ocean-acidification study. These products are not so accurate compared to direct
field measurements, and the validities of the algorithms used needs to be improved.
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Considering these defects, developments on both algorithms and satellite technology
are needed.

Ocean acidification is a large spatio-temporal scale phenomenon and needs to
be observed globally. As ocean acidification becomes more and more serious, an
integrated programme, including experimental measurements, modelling approaches,
field monitoring and satellite observation, is required to provide policymakers with
sufficient information for management strategies in the future.

Generally, remote sensing, with its real-time and large-scale advantages compared
to traditional measurements, is certain to play a tremendous part in studies of ocean
acidification, which will help humans better mitigate and adapt to the expected long-
term changes.
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