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ABSTRACT ARTICLE HISTORY
In this study, we analysed the interannual variability of sea surface Received 21 May 2019
temperature (SST), sea surface wind (SSW), and sea level anomaly Accepted 22 October 2019
(SLA) in the South China Sea (SCS) during 1985-2016 using monthly

reanalysis and satellite datasets. An empirical orthogonal function

(EOF) analysis was performed to evaluate the interannual variability

of each variable. The warming rate of SST was 0.18 + 0.26°C

decade™ in the SCS. The first EOF of SST was characterized by

basin-wide warming, with the highest anomalies in the northern

deep basin. The first temporal coefficient of SST was negatively

correlated with the Nifio 3.4 index, with a lag of 6 mo. The mean

rising rate of SLA was 7.6 cm decade™', with the greatest trend in

the coastal water of Vietnam, which exhibited a similar spatial

pattern with the first EOF of SLA. The temporal coefficient of SLA

was negatively correlated with that of SST, with a lag of 5 mo. The

trend of SSW was around 0.8 m s~' decade™" over the SCS. The first

EOF of SSW was characterized by an anticyclonic pattern. The

temporal coefficient was correlated with that of SST, with a lead

of 2 mo. Wavelet coherence was used to investigate the cross-

correlation relationship between SST and other variables. SST and

SLA had a strong negative correlation in the 8-16-mo (1-1.5 yr)

band. The high positive wavelet coherencies between SST and SSW

and Nifo 3.4 were mainly in the 32-64 mo (3-5 yr) band in the SCS.

1. Introduction

The South China Sea (SCS) is one of the largest marginal seas in the world. It extends from
the Karimata Strait (~ 3°S) to the Taiwan Strait (23.5°N); it is bordered on the west by the
Asian continent, Indo-China Peninsula, Malay Peninsula, and Borneo and on the east by
Taiwan south to the Sulu Sea through the Mindoro Strait (Figure 1). The deep basin lies in
the northern central part of the SCS, with a maximum depth of about 5000 m. In the
northwest of the deep basin, a shelf extends about 250 km from the mainland coast.
The SCS is under the modulation of the East Asian monsoon. The SCS is dominated by
the northeasterly monsoon in winter, and the wind direction reverses to be southwesterly
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Figure 1. Map of the South China Sea (SCS).

in summer (Wyrtki 1961). In response to the northeasterly monsoon, the upper-ocean
circulation is generally cyclonic. The summer circulation is characterized by an antic-
yclonic gyre in the southern basin and a weak cyclonic gyre in the north (Shaw and
Chao 1994; Chu, Edmons, and Fan 1999; Shaw, Chao, and Fu 1999; Qu 2000).
Correspondingly, sea surface temperature (SST), sea surface wind (SSW), and sea level
anomaly (SLA) in the SCS display strong seasonal and interannual cycles. SST variation in
the SCS can greatly influence extreme weather events and climate in the surrounding area
on different time scales (Ding and Chan 2005; Wang, Ling, and Wang 2009; Ling et al.
2011; Kajikawa and Wang 2012; Liang et al. 2013; Xiang and Wang 2013; Vaid 2017). On
the other hand, SST variation in the SCS influences SSW (Xie et al. 2003; Vaid and Polito
2016) and modulates the ocean’s dynamic height (Shi et al. 2015). For instance, increased
SST during the warm phase of El Nifo-Southern Oscillation (ENSO) is often coupled with
higher than average annual SLA in the eastern tropical Pacific.

There are many studies on the seasonal variability in SST, SSW, and SLA in the SCS (e.g.,
Chu, Lu, and Chen 1997; Ho et al. 2000a; Hwang and Chen 2000). Wang et al. (2002) reported
a strong SCS warm event in 1997-1998, which was related closely to an ENSO event. Liu
et al. (2004) found that the variability of the cold tongue in the SCS in winter was correlated
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closely to Nifio 3 and the SST anomaly. The anomalous SSW over the SCS was analysed by
Chao, Shaw, and Wu (1996), especially for the 1982-1983 ENSO event. The analysis of Ho
et al. (2000b) further revealed a response of the sea surface height in the SCS to an ENSO
event. Li, Xu, and Cai (2002) found that the sea level in the SCS increased at a mean rate of
1 cmyr™" from 1993 to 1999. But studies mentioned above mostly focused on one particular
variable or event using data of short temporal coverage. As a tropical marginal sea of the
Pacific, the SCS exhibits remarkable interannual variability (Chu, Lu, and Chen 1997; Wen,
Graf, and Huang 2000; Fang et al. 2006; Zhang et al. 2014). Therefore, with the availability of
> 30 yr of the reanalysis product of SST and SSW, and > 20 years of satellite-observed SLA,
we can now conduct an integrated analysis of these variables fields to provide a more
systematic view of the trends and interannual variability in the SCS.

We aim to find the link between SST and other physical parameters in the SCS on an
interannual time scale. Our objectives are as follows: 1) to identify the main modes of
variability within every single reanalysis and satellite-derived dataset (SST, SLA, and
SSW), 2) to study the trends of the three fields, and 3) to define the temporal correlation
between SST and other fields.

2. Data and methods

Both monthly SST and SSW data were from the ERA-Interim dataset, a reanalysis product
produced by the European Centre for Medium-Range Weather Forecasts (ECMWF) (Dee
et al. 2011). SST and SSW data were collected during January 1985 — December 2016,
which were on grids of 0.125° gird and 0.5° gird, respectively. The data covered the area
from 3-24°N to 99-123°E in the western Pacific Ocean. Monthly SLA data used in the
present work were from a 0.25° x 0.25° grid, which was produced by AVISO (archiving
validation, and interpretation of satellite oceanographic data), France. SLA data were
prepared by merging the TOPEX/Poseidon (TP), Jason-1, and ERS-1/2 altimeter observa-
tions. Because the SLA product began in September 1992, we only used data from
January 1993 to December 2016.

The empirical orthogonal function (EOF) analysis is a statistical method that
compresses the variability in a time-series of data with the aim of providing
a compact description of their spatio-temporal variability of orthogonal functions
(Lagerloef and Bernstein 1988; Baldacci et al. 2001; Navarro and Ruiz 2006; Parada
and Canton 2010). The datasets of SST, SSW, and SLA were organized in a (N x M)
matrix, where N and M represented the temporal and spatial elements, respectively.
Because we focused on interannual variability in this study, seasonal cycles were first
calculated by the annual-averaged original data from the monthly values of each
dataset to obtain monthly anomalies. For the wavelet spectrum, the 12-mo running
mean was one of the shortest filters to remove frequencies higher than one cycle
per year (Emery and Thomson 2001). Thus, the amplitude modulation of the annual
variation, or the interannual variability in seasonality, was also filtered out by the

process. Alternatively, the spatial means of each pixel were removed. For example,

the matrix /(x,t) of SST can be written byl(x,t) = >_N_ an(t)Fn(x), where an(t) are

the temporal evolution functions and Fn(x) are the spatial eigen-functions for each
mode.
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3. Results and discussion
3.1. Seasonal cycle

First, we present the basic characteristics of the seasonal variability for mean fields of SST
and SSW (32 yr) and mean fields of SLA (24 yr) during the study periods (Figure 2). The SST
in summer is much more uniform than that in winter (Figure 2(a,d)). SLA demonstrated
obvious negative values (dark blue) in the area off the southwest coast of the Mekong
River Estuary (MRE) and off the east coast of Vietnam (Figure 2(b)), but it was yellow and
green in most SCS areas. In addition, the southwesterly monsoon prevailed during
summer, with the strongest wind speeds (> 7 m s, Figure 2(c)) along the coastline of
Vietnam between 7° and 13°N. In the northern SCS domain, water depth was > 1500 m,
which was about 40 km away from the coastline and > 300 km from the MRE. Considering
surface forcing and bathymetry, the favourable conditions for upwelling appeared locally
(Figure 2(a), black arrow) off the east coast of Vietnam in summer. Colder water (< 29 °C)
began near the coast and extended eastward towards the open sea.

In winter, SST was characterized by low values in the northwest basin and high values
in the southeast basin (Figure 2(d)). The low temperature in the northwest was caused by
the prevailing winter northeasterly wind (Figure 2(f)), which played an important role in
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Figure 2. Summer- and winter-mean climatologies of sea surface temperature (SST), sea surface wind
(SSW), and sea level anomaly (SLA) in the SCS.
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cooling the SST in the northern SCS. First, winds brought cold and dry air to the SCS and,
thus, cooled the surface through air-sea heat exchange. Second, wind generated
a southwestward coastal current, which in turn brought cold coastal waters from the
East China Sea and Taiwan Strait into the SCS (Chu, Edmons, and Fan 1999; Hu et al. 2000).
In winter, the northeasterly wind had maximum wind speeds along the coastline of
Vietnam between 8°N and 14°N, which was almost the same domain as that in summer,
although it was stronger and broader than that in summer (> 9 m s Figure 2(c), winter).
In this region, SLA in winter also opposite to that in summer (Figure 2(b)), which
displayed- conditions favourable for downwelling (Gao et al. 2013). In addition, we
observed low SLA in the southeast region and in the Luzon Strait of our study area in
winter (Figure 2(f)), which was opposite to the high SLA in this region in summer.

3.2. Interannual variability

In the EOF decomposition, eigenvalues were ordered in terms of the percentage of
variance they explained, which allowed a straightforward identification of the main
modes of variability in the dataset; that is, the first eigenvalue explained higher amounts
of the total variance. In this study, EOF analysis was performed for SST, SLA, and SSW after
their respective climatological averages were removed first. Because the first three modes
of SST, SLA, and SSW were all statistically significant, they were used further to explain the
interannual variability in the SCS (Figures 3-5).

SST anomalies in the first EOF mode (54%) for the entire study area were all positive
(Figure 3(a)), which indicated that the entire SCS exhibited basin-wide warming. The first
temporal mode (Figure 3(d)) reached its peak in December-February and its valley in June-
August, which responded to the cold northeasterly monsoon and the warm southwesterly
monsoon, respectively. The temporal coefficient for this mode indicated high values
during 1997-1998 and low values during 2011-2012. The spatial pattern (11% of the
total variance, Figure 3(b)) of the second EOF mode exhibited distinct variation from the
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Figure 3. Spatial patterns and temporal coefficients of the first three empirical orthogonal function
(EOF) modes of SST during the study period.
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Figure 4. Spatial patterns and temporal coefficients of the first three EOF modes of SLA during the
study period.
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Figure 5. Spatial patterns and temporal coefficients of the first three EOF modes of SSW during the
study period.

southeast (blue colour) to the northwest (green colour). This feature was not captured
well in previous EOF analyses that demonstrated a strong north-to-south contrast across
the SCS (Chu, Lu, and Chen 1997). The third EOF mode of SST demonstrated a dipole in
the study area (7 % of the total variance, Figure 3(c)), with negative anomalies in the
northeastern region and positive ones in the southwestern region.

The first EOF mode of SLA accounted for 39% of the total variance, which indicated that
the entire basin experienced a rise in sea level during the study period (Figure 4(a)).
However, the horizontal gradients in amplitude were large, and a major signal was apparent
in the southeast part of the SCS. The second and third EOFs each accounted for 7% of the
total variance. The second EOF mode of SLA demonstrated an opposite spatial pattern
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compared with the first EOF mode (Figure 4(b)). The third EOF mode was due mainly to
oscillations centred at 111°E, 12°N in the northern basin, which extended from Vietnam to
Luzon; this revealed an upwelling signal in the study area (Figure 4(c)). The temporal
coefficient of the first EOF mode demonstrated a rising trend with a rate of 0.06 cm yr".
It experienced a peak in December with negative values (< - 0.15) in 1998 (El Nifio event),
then large positive values persisted in 2011 (> 0.15) and 2012 (> 0.13) (Figure 4(d)). SLA that
is driven by ENSO may be up 5-8 cm during strong El Nifio/La Nifa episodes (Tkalich et al.
2013). SST of the first EOF mode reached a peak and trough during 1998 and 2011,
respectively, which indicated that SLA responded to SST variations throughout the water
column (at least the upper 500-1000 m) (Cheng and Qi 2007). The temporal coefficient of
the second EOF mode also demonstrated a slight rising trend (0.03 cm yr™") during the
entire study period. The second EOF mode contributed positive anomalies to the remnant
summer gyre in the southern basin and negative anomalies in the northern basin. For the
third EOF mode, the summers of 1994, 1997, 2002, 2005, and 2012 favoured the formation
of an eastward upwelling off Vietnam, which was consistent with the climatological summer
feature shown in Zhao et al. (2018).

The first EOF of SSW (36%) demonstrated an anticyclonic pattern in the southern SCS.
From this mode, the southeasterly monsoon (Figure 5(a)) intensified (weakened) during
an ENSO warm (cold) phase over the entire southern SCS, but not in the northern SCS. The
temporal coefficient of the first EOF mode indicated that the peaks (northeasterly mon-
soon) and valleys (southwesterly monsoon) often occurred in November-February and
June-August, respectively (Figure 5(d)). Consequently, there was no distinct change in
trend for the first EOF mode. The second EOF mode of SSW (Figure 5(b)) accounted for
27% of the total variance, which showed a cyclonic pattern. Note that the third EOF was
characterized by spatial uniformity with an anticyclonic pattern, although the SSW speed
showed no distinct difference. The temporal coefficients of the second and third EOF
exhibited rising and dropping trends, although the rates were both small. The temporal
coefficients for the three modes revealed interannual variability (Figure 5(d-f)). The
anticyclone (cyclone) developed fully in the transition to the monsoon. From the spatial
pattern of SSW EOF modes (Figure 5(a,b)), the anticyclone (cyclone) weakened the north-
easterly (southwesterly) monsoon in the northern basin.

3.3. Spatial pattern

We calculated the trends in SST, SSW, and SLA over the SCS by fitting a linear function to
each grid mesh after removing annual and semi-annual signals. The linear trend in SST
showed a warming rate of 0.18 + 0.26 °C decade™" during the period 1985-2016, which
was less than both the estimated increases in SST in the SCS by 0.44 °C decade™' during
1982-2006 and 0.80 °C decade™" during 1957-2010 (Belkin 2009; Belkin 2016). The higher
warming rates were in the northern deep basin, and lower rates appeared in the southern
SCS (including the Sunda Shelf area) (Figure 6(a)). The highest rate exceeded 1 °C
decade™ and was located west of the Taiwan Strait, where the SST warming rate was
five times higher than that in the SCS. This is consistent with the variation in SST in the SCS
in a previous study (Belkin and Lee 2014), which found that SST in the Taiwan Strait was
three times higher than in the SCS. The warming trend became weaker towards the south.
However, in the coastal waters over the northern region, we observed a cooling trend can
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Figure 6. Trends in (a) SST, (b) SLA, and (c) SSW in the SCS during the study period.

be observed (Figure 6(a)). The warming rate of the SCS in the last 32 yr was greater than
the global ocean mean warming rate (0.14 + 0.04 °C decade™') between 1960 and 1990
(Casey and Cornillon 2001).

The SLA trend in the SCS was also not homogeneous. SLA showed rising trends in the
range of 5-10 cm decade™ in most parts of the SCS (Figure 6(b)). The mean rate of
increase in SLA was 7.6 cm decade™' for the SCS, which was about 3.0-3.7 times higher
than the global mean SLA observed in the 1990s and during 1950-2000 (Cazenave and
Nerem 2004; Church et al. 2004). However, the rate of increase in SLA in the present study
was lower than that in Li, Xu, and Cai (2002), who estimated 1.0 cm yr™' for a shorter
period (1993-1999). The greatest trend appeared along the east coast of Vietnam, which
was influenced by the jet-shaped upwelling in this region. Moreover, the rate of increase
in SLA in the southern Luzon Strait was higher than that in the northern strait, which
indicated that the upper-layer westward transport in the Luzon Strait became weaker due
to the westerly winds over the SCS (Figure 6(c)). The mean increasing trend in SSW of
approximately 0.6 m s~' decade™ occurred over the SCS (Figure 6(c)). The westerly trend
was consistent with a higher warming rate in the northern SCS than that in the southern
SCS. A convergence of the SSW trend also occurred over the northern deep basin, which
was also consistent with the greater increase in SST in this area.

3.4. Correlation between SST and oceanic parameters

SST in the SCS was influenced strongly by the East Asian monsoon. However, the drag of
the wind on the sea surface moved the water in ways that not only changed SST, but also
SLA (Pugh 2004). Therefore, we focused our analysis on the relationship of SST with SLA
and SSW. Moreover, because SST variation in the SCS is also related closely to the ENSO on
an interannual time scale (Qu et al. 2004; Wang et al. 2006), the influence of the ENSO on
SST was also studied.

Figure 7(a,e) show that both SLA and Nifio 3.4 were almost anti-phase with SSTA during
the study period. The maximum correlation was - 0.42, with SSTA lagging Niho3.4 by 6
mo (Figure 7(f)) and with SSTA leading SLA by 5 months (Figure 7(b)), which agree with
the results of Huynh et al. (2016). Moreover, the SSTA was positively correlated with SSW,
with SSTA lagging SSW by 2 months (Figure 7(c,d)). The differences in the long-term
estimates between the results obtained here and those by other authors (Fang et al. 2006;
Liu et al. 2010; Soumya, Vethamony, and Tkalich 2015; Cheng et al. 2016) are were partly
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Figure 7. Left panels: (a) Time series of relationship between SST anomaly (SSTA) and SLA, (c) Time
series of relationship between SSTA and SSW, and (e) Time series of relationship between SSTA and
Nifio 3.4. The black continuous lines are SSTA. The blue dot line is SLA (in Figure (a)), SSW (in Figure (c))
and Nifo 3.4 (in Figure (e)), respectively. Right panels: (b) Cross-correlations between SSTA and SLA,
(d) Cross-correlations between SSTA and SSW, and (f) Cross-correlations between SSTA and Nifio 3.4.

due to differences in the length of the time-series and especially due to differences in the
methods applied. The approach utilized here revealed that the long-term periodic com-
ponents contributed considerably to the oceanographic data series. Also, it is worth
noting that the length of the time series limited the extraction of natural oscillations.
Consequently, time series should be long enough to extend over several cycles of natural
variability modes to be extracted.

We also applied a wavelet coherence analysis (Grinsted, Moore, and Jevrejeva 2004) to
SST with other oceanic variables (SLA, SSW, and Nifio 3.4 index) in the SCS. Annual cycles
and linear trends were removed from all the time series first to eliminate the influence of
coherence with longer periods. The wavelet squared coherence values below the con-
fidence level indicated more randomly distributed sections. The arrows in the images
indicate the phase difference between SST and its counterpart at each time and period.
The significant section showed a negative relationship between SST and SLA (Figure 8(a)),
with arrows pointing left in the 8- to 16-mo (1-1.5 yr) band during 1993-2016. It was
opposite for the wavelet coherency of SST and SSW (Figure 8(b)); the high positive
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Figure 8. Wavelet coherency and phase between (a) SST and SLA, between (b) SST and SSW, and
between (c) SST and Nifio 3.4. Contours are squared wavelet coherencies that ranged from 0 to 1 (1
being the highest coherence). The thick black contour indicates the 5% significance level against red
noise, and the lighter shade indicates the cone of influence, which represents possible edge effects.
The relative phase relationship was shown as arrows with in-phase pointing to the right and anti-
phase pointing to the left.

correlations were mainly in the 8- to 16- mo (1-1.5 yr) band. The high positive coherency
occurred mainly in the 32- to 64- mo (3-5 yr) band in the entire study area for the wavelet
coherency of SST and Nifo 3.4 (Figure 8(c)), which was also observed for SLA and SSW
during the study period.

4. Summary

The present study revealed interannual variability and trends in SST, SSW, and SLA in the
SCS, using a long time series of the reanalysis and satellite-derived datasets. SST in the SCS
was much more uniform in summer than in winter. The cold tongue off the east coast of
Vietnam was an indication of upwelling in summer. In winter, SLA, not only along the east
coast but also in the southeast region and the Luzon Strait, was opposite to the condition in
summer. In addition, the southwesterly (northeasterly) monsoon prevailed in summer
(winter) with the strongest wind speed that was almost in the same domain (coastline of
Vietnam between 7° and 13°N). Wind speed was stronger and broader in winter (>9m ™)
than in summer (> 7 ms™).

On the interannual time scale, the positive first EOF mode (54%) of SST indicated that the
entire SCS exhibited basin-wide warming. The second and third EOF modes accounted for
11% and 7% of the total variance, respectively. The first EOF mode (39%) of SLA experienced
arise in sea level during the study period, and its temporal coefficient peaks in December
were negative (< —0.15) in 1998 and positive in 2011 (> 0.15) and 2012 (> 0.13). The first EOF
mode of SSW (39%) demonstrated an anticyclonic pattern, and its temporal coefficient
demonstrated significant interannual variability, with northeasterly monsoons and south-
westerly monsoons that occurred in November-February and June-August, respectively. The
three temporal coefficients all revealed interannual variability.

The mean rate of the SST trend was 0.18 + 0.26 °C decade™" in the SCS, with higher
warming rates in the northern deep basin and lower rates in the southern region. The
mean rate of the SLA trend was 7.6 cm decade™, with the greatest trend in the coastal
water of Vietham that was influenced by the jet-shaped upwelling. The trend of SSW was
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around 0.8 m s~' decade ™" over the SCS. The westerly trend was consistent with a higher
warming rate in the northern SCS than in the southern SCS.

SLA and Nifo 3.4 were almost anti-phase with SSTA during the study period. The
maximum correlation between SSTA and Nifo 3.4 was - 0.42, with the SSTA lagging Nifio
3.4 by 6 mo and with the SSTA leading the SLA by 5 mo. SSTA and SSW were positively
correlated with SSTA that lagged SSW by 2 mo. These results could help to improve our
understanding of ocean forcing factors that respond to climate change, and they could
provide evidence for co-variability among them in the SCS. However, some fields in the
ocean are still uncertain, and their response mechanisms to interannual variability to
climate change need to be investigated in further studies.
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