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ABSTRACT ARTICLE HISTORY
In optically complex waters, it is important to evaluate the accu- Received 22 November 2015
racy of the standard satellite chlorophyll-a (chl-a) concentration Accepted 21 November 2016
algorithms, and to develop accurate algorithms for monitoring the

dynamics of chl-a concentration. In this study, the Moderate

Resolution Imaging Spectroradiometer (MODIS) satellite remote-

sensing reflectance and concurrent in situ measured chl-a (2010-

2013) were used to evaluate the standard OC3M algorithm (ocean

chlorophyll-a three-band algorithm for MODIS) and Graver-Siegel-

Maritorena model version 1 (GSMO01) algorithm for estimating chl-

a concentration in the Bohai and Yellow Seas (BYS). The results

showed that the chl-a algorithms of OC3M and GSMO01 with global

default parameters presented poor performance in the BYS (the

mean absolute percentage difference (MAPD) and coefficient of

determination (R?) of OC3M are 222.27% and 0.25, respectively;

the MAPD and R? of GSMO1 are 118.08% and 0.07, respectively). A

novel statistical algorithm based on the generalized additive

model (GAM) was developed, with the aim of improving the

satellite-derived chl-a accuracy. The GAM algorithm was estab-

lished using the in situ measured chl-a concentration as the out-

put variable, and the MODIS above water remote-sensing

reflectance (visible bands at 412, 443, 469, 488, 531, 547, 555,

645, 667, and 678 nm) and bathymetry (water depth) as input

variables. The MAPD and R? calculated between the GAM and the

in situ chl-a concentration are 39.96% and 0.67, respectively. The

results suggest that the GAM algorithm can yield a superior per-

formance in deriving chl-a concentrations relative to the standard

OC3M and GSMO01 algorithms in the BYS.

1. Introduction

Satellite-derived chlorophyll-a (chl-a) concentrations have been an essential index for
large spatial-scale and long temporal-scale oceanographic studies. However, both

CONTACT Dongyan Liu @ dyliu@yic.ac.cn @Yantai Institute of Coastal Zone Research, CAS, 17th Chunhui Road,
Laishan District, Yantai 264003, P.R. China

© 2016 Informa UK Limited, trading as Taylor & Francis Group


http://www.tandfonline.com

640 (&) Y.WANG ET AL.

careful validation and sophisticated algorithm development are major requirements in
order to retrieve accurate chl-a products from satellite imagery. In global oceans, the
empirical algorithms and semi-analytical algorithms were commonly used to estimating
chl-a concentration from ocean colour sensors. Empirical algorithms rely on a specific
feature, such as the ratio between the blue and green band reflectance and combina-
tions of more spectral bands, modelled to chl-a measurements using statistical regres-
sion (O'Reilly et al. 1998; Dall'Olmo et al. 2005; Moses et al. 2009; Hu, Lee, and Franz
2012). Currently, standard Moderate Resolution Imaging Spectroradiometer (MODIS) chl-
a products provided by the US National Aeronautics and Space Administration (NASA)
Ocean Biology Processing Group (OBPG) are derived using the empirical OC3M (ocean
chl-a three-band algorithm for MODIS) algorithm. The OC3M chl-a has been widely
applied for estimating phytoplankton biomass (Liu and Wang 2013; Gonzdlez Taboada
and Anadon 2014), investigating harmful algal blooms (Tang et al. 2004; Hu et al. 2010;
Park, Ruddick, and Lacroix 2010) and evaluating eutrophication (Kitsiou and Karydis
2011; Banks et al. 2012). However, chl-a in optically complex waters, derived using the
standard OC3M algorithm, must be evaluated systematically and used carefully because
the presence of complex constituents, such as detritus and coloured dissolved organic
matter (CDOM), can significantly increase the uncertainty in chl-a retrievals (Moore,
Campbell, and Dowell 2009).

The semi-analytical models constitute another algorithm for estimating chl-a concen-
tration from ocean colour sensors. The semi-analytical algorithms rely on radiative
transfer solutions from knowledge of the inherent optical properties (IOPs) and try to
isolate the spectral influence of several optical variables (Carder et al. 1999; Maritorena,
Siegel, and Peterson 2002; Wang, Boss, and Roesler 2005). The Graver-Siegel-Maritorena
model version 1 (GSMO01) is a widely used semi-analytical algorithm (Maritorena, Siegel,
and Peterson 2002) and was well adopt for open waters because its parameters were
simulated from a large global in situ dataset. A standard GSMO1 chl-a product, provided
by the European Node for Global Ocean Colour project (http://www.globcolour.info/),
has been widely used in estimating phytoplankton biomass (Gonzalez Taboada and
Anadoén 2014; Dave and Lozier 2015). The success of the semi-analytical approach
depends on correct radiative transfer solutions and the accurate parameterization of
the absorption and scattering coefficients of each individual constituent in the waters.
Because these parameters are geographically specific and not generally known accu-
rately in complex waters, retrievals are not always successful. For example, Shang et al.
(2014) examined several chl-a algorithms in the northern South China Sea, and con-
cluded that the GSMO1 algorithm with default parameterization led to high errors in
coastal waters. Komick, Costa, and Gower (2009) found that the standard GSMO01 algo-
rithm was ineffective at estimating the chl-a concentrations in turbid waters, but a
modified version using different CDOM and phytoplankton absorption models exhibits
significantly improved accuracy. Overall, the successful application of the GSMO01 algo-
rithm requires appropriate tuning of the default parameters in the model based on the
local bio-optical dataset.

Because of the constraints associated with OC3M and GSMO1 algorithms when
estimating chl-a concentration in optically complex waters, some statistical inversion
approaches have successfully been developed to retrieve chl-a concentrations from
satellite images in complex waters, with the advantages that require no prior knowledge
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of the optical features and easy to implement. For example, neural network based
algorithms were successfully implemented for quantifying the chl-a concentration
from satellite reflectance (Vilas, Spyrakos, and Torres Palenzuela 2011; loannou et al.
2013). The generalized additive model (GAM) is another promising statistical method,
which has been applied for satellite ocean colour data analysis (Hastie and Tibshirani
1986, 1990). As neural network based algorithm, a GAM-based algorithm does not
require any prior knowledge of the structural relationship between the response variable
and the predictors, and is able to determine the relation from the input variables by
itself. In addition with GAM method, it is possible to examine the specific importance
and influence of each predictor in the estimation (Hastie and Tibshirani 1990). In recent
years, the GAM method had been proposed for estimating trends of chl-a concentration
in global oceans (Boyce, Lewis, and Worm 2010), quantifying the influence of the
environmental regime on chl-a concentration variation (Irwin and Finkel 2008; Raitsos
et al. 2012), estimating sea surface salinity using MODIS ocean colour reflectance
(Urquhart et al. 2012), and mapping Secchi depth using MODIS-Aqua and auxiliary
data (Stock 2015). In this context, GAM might be a good choice for chl-a concentration
retrieval from satellite ocean colour reflectance.

The main goals of this study are (1) to evaluate the performance of the global
standard chl-a algorithms (OC3M and GSMOT1) for estimation of chl-a concentration in
the turbid coastal waters of the BYS compared to in situ chl-a concentration data and (2)
to develop an accurate GAM algorithm based on a statistical analysis between the
concurrent remote-sensing reflectance at available MODIS-visible wavelengths and the
in situ chl-a measurements for estimating the chl-a concentration in the BYS.

2. Materials and methods
2.1 Study area

The Bohai and Yellow Seas (BYS), located in northern China, are connected by the Bohai
Strait (Figure 1). The Bohai Sea is a shallow inland sea with an average water depth of
18 m. The Yellow Sea, located between mainland China and the Korean Peninsula, is a
typical shallow epicontinental sea with an average depth of approximately 50 m (Liu and
Wang 2013). The optical properties of BYS are significantly influenced by high sus-
pended sediment from river discharges and bottom reflectance from the shallow sea
floor (Wang, Tang, and Shi 2007; Shi and Wang 2010b), which can contribute to the large
errors of the standard chl-a algorithms (Shi and Wang 2010a, 2010b). To improve the
accuracy of the satellite chl-a products, Chen and Quan (2013) developed an improved
empirical algorithm using a different combination of bands in the standard OC3M
algorithm over the Yellow River Estuary, and Huang et al. (2013) modified and validated
semi-analytical inversion models of the ocean colour in coastal Yellow Sea and East
China Sea. In general, the development of empirical algorithms has been hindered by
their need for prior information about the optical properties to support the selection of
the bands (Siswanto et al. 2011; Chen and Quan 2013), while the semi-analytical
algorithm was usually hindered by improper default parameter settings in the model
(Huang et al. 2013; Shang et al. 2014). Therefore, it is necessary to perform a systematic
evaluation of the satellite standard chl-a products and further develop more accurate
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Figure 1. Map showing the study area (the Bohai and Yellow Seas) and the sites of the in situ chl-a
measurements.

and operational algorithms that can be properly applied in the BYS. In this sense,
statistical inversion approach based on GAM was used for the first time to derive the
chl-a concentration from ocean colour reflectance in the BYS.

2.2 In situ measurements of chl-a

The in situ measured sea surface chl-a data was used for chl-a algorithm accuracy
assessment and new algorithm development. These chl-a data were collected from
five cruises conducted during the years 2010-2013 (Figure 1). The five cruises used
almost the same sampling method for the chl-a measurements, and each site had three
duplicate samples for quality control. Samples of 1000 ml of water were collected from
the surface layer with a measurement depth of less than 5 m and then filtered through
47 mm Whatman GF/F filters under low vacuum. The filters were preserved in the dark at
a low freezing temperature (-20°C) before laboratory analysis. In the laboratory, the chl-
a concentration was determined spectrophotometrically (TU-1800, Persee, China) after
being extracted with 15 ml of 90% acetone in the dark for 24 h at 4°C (Lorenzen 1967).
The longitude, latitude, and water depth of each site was also recorded as auxiliary data.
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2.3 MODIS imagery and data extraction

The daily MODIS-aqua standard local area coverage (LAC) remote-sensing reflectance
(R.s) images for 10 available visible bands (wavelength at 412, 443, 469, 488, 531, 547,
555, 645, 667, and 678 nm) and standard chl-a products were downloaded from the
NASA Goddard Space Flight Center (GSFC, http://oceancolor.gsfc.nasa.gov/cms/). The R
data sets were derived using the most update-to-date standard calibration and atmo-
spheric correction algorithms (Gordon 1997; Wang and Shi 2007), with a spatial resolu-
tion of approximately 1 km x1 km.

For validation of standard algorithms and new algorithms development, the
standard criterion for extracting concurrent data from satellite images, and in situ
measurements was commonly as follows: (1) a time difference of +3 h was set to
acquire matching pairs; (2) the median value from a 5 x 5 window centred at each in
situ site was used to define the coincident values in satellite images; (3) to minimize
the sensor and/or algorithm noise and avoid strong non-homogeneous windows, the
satellite data were only used when the number of valid pixels in the 5 x 5 window
exceeded 15 and the coefficient of variation (CV) was <0.15. As a result, a dataset
with only 23 matching pairs was produced by the match-up using this standard
criterion. Because of the 23 samples is far less than the needs for GAM model
training with 13 independent variables, a relaxed criterion for match-up analysis
was adopted in this study. The relax criterion has the same procedures as the
standard criterion except for the time window is £24 h and the CV is less than 0.5.
In total, 180 matching pairs between the satellite and in situ measurements were
extracted for statistical analyses.

In this study, the concurrent dataset produced from the relaxed match-up criterion
(with 180 samples) was applied for the GAM development and the accuracy comparison
between different chl-a algorithms. A strict accuracy comparison was also presented in
Section 4.1, using the concurrent dataset produced by the standard match-up criterion
(with 23 samples), in order to investigate the effect of the relaxed criterion on the results
of match-up analyses.

2.4 Standard satellite chl-a algorithms

The standard satellite chl-a products were calculated using the following algorithms,
which are freely available to end users: (1) OC3M, a fourth-order empirical algorithm
based on two MODIS R,s band ratios (Rys 443/Rys ;547 and Rys 4ss/Rys547) (O'Reilly et al. 2000);
(2) GSMO01, an optimized semi-analytical algorithm that simultaneously retrieves chl-a
concentration, absorption coefficient for dissolved and detrital materials and the parti-
culate backscatter coefficient at the reference band, from spectral measurements of
remote-sensing reflectance (Lee, Carder, and Arnone 2002; Maritorena, Siegel, and
Peterson 2002; Franz and Werdell 2010). The default parameters for the GSM01 model
were estimated by Maritorena, Siegel, and Peterson (2002) using a simulated annealing
approach from a global in situ data set, and selecting 443 nm as the reference wave-
length. A Levenberg-Marquardt nonlinear least-squared method is commonly used to
solve the unknown parameters in the model.
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2.5 Application of GAM algorithm

In this study, the GAM method was implemented for the retrieval of chl-a concentrations
from MODIS R, images. A GAM is a flexible statistical model that extends the traditional
linear model to account for nonlinear relationships between the response and predictor
variables (Hastie and Tibshirani 1986, 1990). The development of a GAM includes three
phases: (1) the original design of the GAM based on the property of the response
variable, i.e. deciding the smoothing function, link and distribution functions; (2) con-
sideration of the predictor parameters, determining the potential parameters to test as
input independent variables in the GAM; (3) model optimization based on a forward and
backward stepwise model fitting approach, to select the related independent variables
and decide the final formula of the model.

2.5.1 Structure of the GAM

The GAM constructs non-parametric smoothing functions of the predictor variables to
replace the generalized linear functions in linear models with the form (Hastie and
Tibshirani 1986, 1990; Wood 2006):

y=Bo+ Y fi(x)+e m
=

where y is the response variable, By is the overall mean of the response, x; are the
predictor variables, € is the residual, and f; are smoothing functions such as splines,
kernels, and linear functions, which are obtained using a scatterplot smoothing algo-
rithm with a back-fitting procedure that allows for choosing the appropriate function for
each of the x;.

A cubic regression spline smoothing function with a potential knot point at each
independent variable was used in this study. A log link was used to establish the
relationship between the mean value of the response variable y and the smooth
function of the parameter x together with a Gamma distribution because the chl-a
data present a highly positive skewed distribution of non-negative values (Campbell
1995).

2.5.2 Independent variables consideration

The critical step in the GAM algorithm development is the determination of independent
variables that may account for the significant influence of the response variable. In this
study, in situ measured chl-a data were the dependent variable, and the independent
variables were chosen from two geographic parameters (coordinate and water depth) and
the MODIS-derived optical parameters (remote-sensing reflectance in visible bands). The
geographic variables were considered, because the chl-a concentration presents significant
spatial heterogeneity (Shi and Wang 2012; Yamaguchi et al. 2012; Chen and Liu 2015) and
the bathymetry is the prominent factor controlling the chl-a distribution in the BYS (Liu and
Wang 2013). Specifically, the distance to the land increases with the water depth, which
can further influence the land-source nutrients discharge from land into the sea (Wang,
Wang, and Zhan 2003); the bathymetry also imposes significant impact on the current
system and front structure, which can further influence the horizontal and vertical transport
of nutrients (Chen 2009; Liu and Wang 2013). Therefore, the bathymetry was considered as
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one of the potential factors affecting the variability of chl-a concentrations through
controlling the distribution of nutrients in the BYS.

2.5.3 GAM optimization and cross-validation

To optimize the GAM formula, a forward and backward stepwise model fitting approach
was used based on Akaike’s information criterion (AIC) statistic (Bozdogan 1987; Hastie and
Tibshirani 1990; Wood 2006). All the independent variables were included in the original
model as smoothed terms. By using the AIC, the significance of each term in the model
could be assessed, and the stepwise approach was enabled the removal of insignificant
variables (predictors) from the final model. Hence, the final model gives the combined
effect of each significant independent variable (predictor) on the dependent variable
(response). A detailed description of the GAM can be found in the studies of Wood
(2004) and Hastie and Tibshirani (1990), while examples of using in phytoplankton research
are provided by Boyce, Lewis, and Worm (2010) and Raitsos et al. (2012).

Model validation was performed using cross-validation techniques. For all cases, 80%
of the original match-up data points were randomly selected as a training dataset for the
GAM, and the resultant model was validated on the remaining 20% of the data. This
cross-validation procedure was repeated five times to ensure that the results are not
biased by random selection of the data points.

2.5.4 Analysis of the GAM results

A final GAM model was established based on the response variable and its significant
influential predictors. The specific importance and effect of each predictor imposed on
the response can be examined from the GAM results. The relative significance of each
predictor can be quantified and compared by the significance (p-value) associated with
each smoothed term in the GAM. The effect of each predictor on the response can be
described by the effective degree of freedom (EDF) and the function plot of each
smoothed term.

2.6 Algorithm evaluation

To evaluate the results of the chl-a algorithms in relation to in situ chl-a values, the
parameters of mean bias (MB), mean absolute percentage difference (MAPD) and root
mean square log error (RMSLE) associated with the linear regression were calculated.
These statistical parameters are expressed as

N
Z Csa — Gin), 2)

Csa - Cln

100 3
G | 100% ®)

MAPD = NZ

RMSLE =

Z |

N
Z 1019(Csa) = 1091(Cin))?, (4)
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where C,, G, and N are the satellite derived chl-g, the in situ measured chl-a, and the
number of match-ups, respectively. MAPD gives the accuracy or uncertainty of the
difference, while MB gives the systematic error or direction of bias (overestimation or
underestimation) with respect to the in situ values; RMSLE is a robust parameter for
comparison of the different chl-a algorithms via consideration of the log-normal dis-
tribution of chl-a values (Campbell 1995). Scatter plots of in situ measured chl-a values
versus satellite-derived chl-a values for each algorithm were produced, and the slope
and intercept of the linear fit and its coefficient of determination (R were also obtained.

3. Results
3.1 Characteristics of the in situ chl-a concentration

The in situ measured chl-a concentrations (n = 503) in the study area span three orders
of magnitude and range between 0.08 and 26.81 mg m™ (Figure 2). The mean value
(1.59 mg m~3) is much higher than the global average (about 0.24 mg m™) (Gregg and
Conkright 2002) and also higher than the average (about 0.61 mg m™) over the north-
ern temperate oceans (30-60° N) (Dasgupta, Singh, and Kafatos 2009), because of the
proximity to the coast of most measurement sites. However, compared with the most
turbid estuary regions in the world, such as Chesapeake Bay (the average of in situ chl-a
concentration is about 7.7 mg m™3) (Werdell et al. 2009), the in situ chl-a concentration
in the BYS is much lower. Based on the oceanic provinces defined by Antoine, André,

35
30

25

Frequency (%)
8
1

—_
w
1

0.1 1.0 10.0
In situ chl-a (mg m'3)

Figure 2. Frequency distribution of in situ measured chl-a concentrations (mg m™) for the whole
data set (n = 503).
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Table 1. Statistics of the in situ measured sea surface chl-a concentration for the five cruises.

Year Month Number Average + SD Max Min
2010 April, May 96 2.75 £ 3.05 16.28 0.20
2012 May 118 1.21 = 1.06 9.43 0.10
2012 November 101 0.66 + 0.31 2.50 0.25
2013 June, July 83 243 +3.27 26.81 0.08
2013 November 105 1.18 £ 0.82 435 0.11

Whole dataset 503 1.59 = 2.14 26.81 0.10

SD, Max, and Min represent the standard deviation, minimum, and maximum, respectively. (Unit: mg m™>))

and Morel (1996), only 0.4% of the sampling sites (i.e. two) are oligotrophic with chl-a
concentrations less than 0.1 mg m=, 54.1% are mesotrophic with concentrations
between 0.1 and 1.0 mg m™> and 45.5% are eutrophic with concentrations greater
than 1.0 mg m™.

The statistics of in situ measured chl-a concentration for the five cruises were illustrated
in Table 1. The seasonal variability of chl-a concentration was produced by taking an
average value of each cruise, and the standard deviation of chl-a concentration in each
cruise quantified its spatial heterogeneity. The average of chl-a concentration shows an
obvious seasonal variation with high values in spring (April and May) and summer (June
and July), with low values in autumn (November). The standard deviation of chl-a con-
centration also presents seasonal variation with high values in summer and spring, while
low values in autumn (Table 1). The high value of standard deviation combined with the
extreme high maximum (more than 10 mg m™3) in spring and summer may be related to
the occurrence of algae blooms during these two seasons (Liu et al. 2009; He et al. 2013;
Liu and Wang 2013). Note that we cannot describe a complete annual cycle of chl-a
concentration in this study due to the lack of in situ samples in winter.

3.2 OC3M algorithm evaluation

The accuracy of the OC3M chl-a algorithm was evaluated by comparison between the
satellite-derived and in situ measured chl-a concentrations. A scatter plot of the in situ
versus OC3M chl-a values and the calculated parameters are shown in Figure 3. High
values of MAPD (222.27%) and RMSLE (0.50) indicate poor performance of the OC3M
algorithm in the BYS. A value of MB = 2.04 indicated a distinct overestimation in chl-a
values produced by OC3M. The distribution of coloured-coded points on the scatter plot
exhibits a distinct division between shallow (coastal) and deep (offshore) waters
(Figure 3). The deviation of colour-coded points from 1:1 line is larger in coastal waters
than offshore, indicating that the OC3M chl-a algorithm results in larger errors in the
coastal waters than in the offshore waters over the BYS. Although the absolute error was
large in OC3M chl-g, the relative pattern might be reasonable, according to the sig-
nificant correlation (R* = 0.25, p < 0.01) and positive slope (0.49).

3.3 GSMOT1 algorithm evaluation

The accuracy of the GSMO1 chl-a algorithm can be addressed by a comparison between
the satellite-derived and in situ measured chl-a values, as shown in Figure 4. Compared
to OC3M, the GSMO1 presented a lower error with MAPD = 118.08% and RMSLE = 0.45,
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Figure 3. Scatter plot of the in situ measured chl-a values versus the satellite-derived chl-a calculated
using the OC3M algorithm in the BYS. The colour scale in the figure indicates water depth of the site.

and overall slighter overestimation (MB = 0.15). However, the R> = 0.07 indicated no
significant correlation between the GSM01 and the in situ chl-a values. The distribution
of the colour-coded points and the slope of the linear regression (0.2) indicated that
GSMO1 overestimates the chl-a concentration in coastal waters but underestimates the
concentration in the offshore waters over the BYS.

3.4 Results of GAM chl-a algorithm construction

A final GAM model for the best set of variables obtained from the AIC evaluation can be
written as

chl-a = By+ Z $(Ris(A)) + s(depth) + ¢
A = 412,443, 469, 488, 531, 547, 555, 645, 667, 678. (5)

In the final GAM model, the depth of sites and all the 10 visible R, bands were
included as predictors. The final GAM function explained 84.8% of the variance of chl-a.
The scatter plot of in situ measured versus GAM predicted chl-a is shown in Figure 5.
Compared with OC3M (Figure 3) and GSMOT1 (Figure 4), the GAM model displays better
agreement with the in situ observations. The GAM algorithm shows better statistical
agreement than the OC3M and GSMO1 algorithms with R* = 0.67, MAPD = 39.96%, and
RMSLE = 0.20. The distribution of colour-coded points (Figure 5) presents a
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Figure 4. Scatter plot of the in situ measured chl-a values versus the satellite-derived chl-a calculated
using the GSMO1 algorithm in the BYS. The colour scale in the figure indicates the water depth of
the site.

homogeneous distribution with water depth, indicating that the GAM algorithm per-
forms as well in shallow waters as in offshore waters. The GAM method has been shown
to be the more effective algorithm for quantifying the chl-a concentration in the BYS.
For the GAM method, it is possible to examine the specific importance and effect of each
of predictors (R,s and depth Equation (5)) in the estimation of chl-a concentration. Table 2
lists the effective degree of freedom and approximate significance associated with each
smoothed term in the final GAM model. The result shows that all the 11 variables included in
the GAM are statistically significant (Table 2, p-value <0.05) and thus important in the chl-a
retrieval. Of the 11 predictors included in the GAM, R,s at 412, 443, and 555 nm present the
highest influential behaviour on chl-a estimation (smallest values of p-value in Table 2). The
effect of each predictor on the response (chl-a) can be examined by the smooth function
plots in Figures 6(a)—(k), in which the positive slope of smoothed line indicates positive effect
of the predictor imposed on the chl-a estimation, and vice versa. Most of the predictor
variables exhibit a significant nonlinear effect on the chl-a estimation (Table 2 and Figures 6
(a)-(k), EDF >1), except for Rys44s, Rrs547, and Ryss7s (Table 2 and Figures 6(a)-(f), EDF = 1). The
chl-a decreases with depth at 0-20 m and 60-80 m, roughly invariable with depth from 20 to
60 m and increases with depth above 80 m (Figure 6(a)). The Ry 412, Ris4as: Riss47, and Rises7
have negative effect on the chl-a estimation, whereas Ry 443, Ris 469, Rrssss Rrssas, and Rise7s
have positive effect on chl-a estimation (Figures 6(b)-(k)). The R, 531 has no-monotonic effect
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Figure 5. Scatter plot of the in situ measured chl-a values versus the satellite-derived chl-a calculated
using GAM algorithm in the BYS. The colour scale in the figure indicates the water depth of the site.

Table 2. Effective degree of freedom (EDF) and approx-
imate significance (p-value) of each of GAM smoothed
terms in Equation (5).

Smoothed term EDF p-Value

Depth 7.95 142 x 1072
Resa12 5.50 415 x 107"
Risa43 3.37 744 x 1072
Ris 460 2.04 436 x 107
Risas8 1.00 7.57 x 1077
Res 531 8.56 1.11 x 1073
Ris5a7 1.00 211 x 107
Ris 555 5.52 236 x 107"
Ris6as 2.30 712 %107
Res 667 1.91 835 % 107
Ris,678 1.01 1.76 x 1073

on chl-g estimation, with chl-a slightly decrease with R, s3; when R 531 <0.005 and increase

with Rss3

when R 531 >0.005 (Figure 6(f)).

3.5 Map comparisons between different algorithms

To provide spatial comparisons between the chl-a products calculated from different
algorithms, Figures 7(a)-(e) present the MODIS composite chl-a maps associated with
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Figure 6. (a)-(k) Smooth function plots for predictor variables in the GAM. Estimated smooth
functions (solid lines) with 95% confidence intervals (shaded area) are shown for each predictor.
The numbers in the labels of the y-axis denote the effective degrees of freedom. The comb on the
x-axis shows where the value of predictor data points lie.

the in situ measured chl-a values during the five cruises. The chl-a distributions in the
first three columns were derived using the OC3M, GSMO01, and GAM algorithms,
respectively (Figures 7(a)-(e)). The fourth column shows the spatial distributions of
in situ measured chl-a concentration (colour of scatter indicates chl-a values) (Figures
7(a)-(e)). Overall, all satellite chl-a images showed similar relative spatial patterns with
higher chl-a in coastal waters and lower values offshore. During spring 2010 (Figure 7
(a)(i-iv)), both the OC3M and GAM images presented a prominent chl-a bloom in the
centre of the Yellow Sea (Figure 7(a)(i, iii))), as indicated by the in situ chl-a plots
(Figure 7(a(iv))), whereas this is not captured by the GSM01 algorithm. In spring 2012
(Figure 7(b(i-iv))), all chl-a products showed consistent patterns with chl-a increased
from deep to shallow waters, but the OC3M chl-a (Figure 7(b(i))) displays high chl-a
patches inconsistent with the in situ chl-a (Figure 7(b(iv))). During autumn 2012 and
autumn 2013 (Figure 7(c(i-iv),e(i-iv)), the spatial distribution produced by GAM and in
situ chl-a were relatively homogenous (Figure 7(c(iii,iv)) (2012); Figure 7(efiii,iv))
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Figure 7. Composite chl-a maps created using the three algorithms (OC3M, GSM01, and GAM) and
the in situ measured chl-a plots for the five cruise periods. Each row represents the period of (a) 20
April-04 May 2010, (b) 02-20 May 2012, (c) 02-20 November 2012, (d) 22 June—09 July 2013, and (e)
06-24 November 2013, respectively. Each column presents the chl-a distributions derived using the
algorithms of OC3M, GSMO01, and GAM, respectively.

(2013)), whereas OC3M and GSMO1 images were characterized by a high gradient
between the offshore and the coastal waters (Figure 7(c(i,ii)) (2012); Figure 7(e(i,ii))
(2013)). In summer 2013 (Figure 7(d(i-iv))), all the three satellite chl-a products show
relatively consistent spatial patterns with in situ chl-a. Overall, the results indicate that
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the chl-a maps produced using the GAM algorithm have a closer correspondence
with the in situ chl-a distribution than the other two algorithms. In particular, the
erroneously high chl-a overestimations obtained using the global standard chl-a
algorithm (OC3M and GSMO01) were reduced in the GAM chl-a maps. It is also clear
that the GSMO1 algorithm (Figures 7(af(ii), b(ii), c(ii),d(ii), e(ii))) missed significant
features seen in the in situ chl-a measurements, the missing features resulting from
the masking out of negative values arising from the inversion failing to find a realistic
solution or because of negative R, values caused by atmospheric correction errors
(Tilstone et al. 2013).

4. Discussion
4.1 Uncertainties and limitations of the results

Because of many compromised schemes were applied in the match-up analyses and
model development processes, we must admit that somewhat uncertainties and certain
limitations still existed in the results of this study.

First, the uncertainties of the validation can result from the relaxed match-up
criterion. The threshold values of temporal window (24 h) and CV (0.5) may be
too large for the BYS with significant terrestrial and tidal influences. For example, the
hourly ocean colour products from the Korean Geostationary Ocean Color Imager
(GOCI) demonstrated significant diurnal variations in ocean optical, biological, and
biogeochemical properties in the Bohai Sea, Yellow Sea, and East China Sea (Wang
et al. 2013). To address the uncertainties from the relaxed match-up analysis, a strict
validation was given using the standard match-up criterion in which the temporal
window and CV was set to £3 h and 0.15, respectively. Figure 8 and Table 3 show the
results of the strict match-up analyses between in situ measured and satellite derived
chl-a products. In spite of slightly deterioration in accuracy of GAM algorithm
(R? = 0.57), the result still confirmed that the GAM algorithm (MAPD = 38.41%,
R?> = 0.57) receive better performance than standard OC3M (MAPD = 140.24%,
R?* = 0.12) and GSMO1 algorithms (MAPD = 92.82%, R* = 0.17), as well as the result
from the relaxed match-up analysis.

Second, it is common to use in situ R, and in situ chl-a products for algorithm
validation and new model development, rather than directly use the satellite R,; and
in situ chl-a products, as satellite R, itself may has inherent uncertainties. For example,
the satellite retrievals of R, at visible bands from MODIS present significant biases with a
median of APD (absolute percentage of difference) of 18-28% along the yellow sea
coast (Cui et al. 2014). These uncertainties in satellite R,s may propagate into the
established GAM model in our study.

Moreover, due to the fact that the GAM model established in this study is based on
the relationship between the apparent optical properties (AOPs) and chl-a concentra-
tions, the GAM algorithm actually belongs to the category of empirical models. This
model is simple and easy to implement. However, it lacks a physical foundation and has
a limited operational range defined by the optical characteristics of the waters for
which they are trained.
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Figure 8. Scatter plot of the in situ measured chl-a values versus the satellite-derived chl-a calculated
using OC3M, GSM01 and GAM algorithm, respectively. The strict match-up criterion was used to
produce the concurrent dataset (n = 23). The solid line indicates fitted line corresponding to each
algorithm.

Table 3. Statistics results for the match-up analysis between in situ measured and satellite derived
chl-a products calculated using OC3M, GSM01, and GAM algorithm, respectively.

Algorithm R? Slope Intercept RMSLE MAPD (%)
ocm 0.12 0.40 0.004 0.40 140.24
GSMO1 0.17 0.21 0.074 0.49 92.82
GAM 0.57 0.81 0.077 0.22 38.41

The strict match-up criterion was used to produce the concurrent dataset (n = 23).

4.2 Performance of the standard algorithms

The statistical and spatial comparisons showed that the OC3M algorithm presented poor
performance in magnitude (MAPD = 222.27%) but somewhat reasonable performance in
relative patterns (R? = 0.25, p < 0.05). OC3M has an obvious overestimation (MB = 2.04),
notably in coastal waters. This overestimation is mainly attributed to errors in atmo-
spheric correction and model development. In the current standard MODIS data, the
atmospheric correction is basically assumed to be black at two near-infrared (NIR) bands
(748 and 869 nm) for the open ocean. However, this NIR black assumption is invalid for
turbid waters, leading to significant errors in MODIS ocean colour data (Wang 2007). For
example, Son, Wang, and Shon (2011) found unreasonable high chl-a patches in the
central Yellow Sea due to the large errors arising from the standard-NIR atmospheric
correction algorithm. The OC3M chl-a algorithm uses the blue-green band ratio of R,
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with a low ratio corresponding to high chl-a values (O'Reilly et al. 1998; O'Reilly et al.
2000). However, additional detritus, coloured dissolved organic matter and suspended
sediment can significantly increase the absorption coefficient of the water and decrease
the R, in the blue band, while it enhances the particulate backscattering coefficient and
increases the R, in the green band. Hence, the chl-a is overestimated by the lower than
normal blue-green band ratios in coastal waters (Dierssen 2010). There are a few
methods that can help to improve the accuracy of OC3M chl-a empirical algorithms.
First, the coefficients in OC3M fourth-order function can be tuned using new regressions
based on local bio-optical samples (Gregg et al. 2009; Siswanto et al. 2011). Second, the
algorithm using other band combinations might obtain more accurate chl-a products,
e.g. the fluorescence line height algorithm (Gower, Doerffer, and Borstad 1999), the
maximum chlorophyll index (Gower et al. 2005) and algorithms using red and NIR bands
(Moses et al. 2009; Le et al. 2013).

The standard GSMO1 chl-a algorithm in our study presented a low accuracy in
magnitude (MAPD = 118.08%) and relative pattern (R* = 0.07). The poor performance
of this algorithm was reported in previous studies in high absorption and backscattering
waters (Komick, Costa, and Gower 2009; Tilstone et al. 2013; Shang et al. 2014). The large
errors of the GSMO1 algorithm are probably due to imperfect atmospheric correction
and the R,-based model parameterization. As discussed above, the failure of the
standard NIR-based atmospheric correction in coastal waters can cause the use of
inaccurate R,s in model development. In the standard GSMO1 parameterization, the
default values of g; (transition from the quasi-single backscatter albedo remote-sensing
reflectance below the air-water interface), Scgom (spectral decay constant for non-algal
detritus and dissolved organic matter absorption), n (power-law exponent for the
particulate backscattering coefficient), and apn* (chl-a specific absorption coefficient)
in semi-analytical function may not reflect the truth of the local area, and these errors
will propagate into the retrieved chl-ag values. To improve the GSM accuracy, a necessary
local parameterization based on in situ measurements is suggested (Franz and Werdell
2010) and implemented (Komick, Costa, and Gower 2009; Tilstone et al. 2013; Shang
et al. 2014). For example, Komick, Costa, and Gower (2009) modified the standard GSM
model by using a different CDOM absorption model and a new estimated phytoplank-
ton absorption; the modified GSM (RMSLE = 0.446) presented better accuracy than the
standard GSMO1 (RMSLE = 0.772) over the western Canada coastal waters. Shang et al.
(2014) tuned the parameters of Scgom, N, and apn* in the GSM model and slightly reduced
the derived chl-a errors (MAPD reduced from 147% to 80%) over the northern South
China Sea.

Overall, without consideration of the errors in MODIS R, data, the success of
standard chl-a algorithms (OC3M and GSMOT1) is highly dependent on the prior
knowledge of the optical response to chl-a variability. For example, in the OC3M
algorithm, the blue and green band ratio was selected as the input variable based on
an optical feature analysis between different levels of chl-a concentration (O'Reilly,
Maritorena, and Siegel 2000). In GSMO1 algorithm, the format and default parameters
of radiative transfer solutions were determined from many bio-optical experiments
(Lee, Carder, and Arnone 2002; Maritorena, Siegel, and Peterson 2002). If the prior
knowledge was not clearly captured by the model, the standard chl-a product is likely
to produce inaccurate retrievals.
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4.3 Performance of GAM algorithm

Compared to the standard OC3M and GSMO1 algorithms, the GAM algorithm produced
more accurate chl-a retrievals over the BYS, and it obtained similar accuracy in the
coastal (shallow) and offshore (deep) waters. In fact, the GAM belongs to the category of
empirical algorithms because it was based on the statistical relationship between the in
situ measured chl-a concentration and the AOP of the water. Compared with the OC3M
empirical algorithm, the GAM method does not require any prior knowledge about the
bio-optical response of water. Compared with other statistical algorithms such as the
neural network based method (Vilas, Spyrakos, and Torres Palenzuela 2011; loannou
et al. 2013), the GAM algorithm can quantify the significant effect of each predictor on
the chl-a estimation, and can depict the relationship between chl-a and each of the
predictors used in the model. Overall, the advantages of the GAM chl-a algorithm can be
summarized as: (1) no requirement of any prior knowledge about optical response to the
chl-a concentration; (2) able to account for nonlinear effects of predictors on the chl-a
estimation; (3) it is possible to examine the significance and influence of each of the
predictors in the chl-a retrievals. In this study, an accurate GAM chl-a algorithm was
established using the predictors of 10 visible bands of R,s and water depth over BYS, and
all the predictors had a significant effect on the chl-a estimation in the model (Table 2).
The effects of each R band and water depth on the chl-a estimation were clearly
described by smooth function plots (Figure 6(a)-(k)), but a more detailed examination is
out of the scope of this study. It is interesting that the R 412 and Ry 443 presented the
most significant effects on the chl-a estimation, although the short wavelength bands
usually have poor accuracy due to improper atmospheric correction in the BYS (Cui et al.
2014). This phenomena indicates that the GAM algorithm may accommodate some
errors originate from the improper atmospheric correction in R, especially in the blue
wavelength band. As a good indicator of suspended sediments concentration in the BYS
(Bi et al. 2011; Wang et al. 2014), the R, ss5 also presents strong effect on chl-a
estimation in the GAM model, which demonstrates that the GAM algorithm may
decrease the influence of suspended sediment imposing on chl-a estimation in turbid
waters. In summary, the improved accuracy in the GAM chl-a products might be
attributed to the following aspects: (1) the GAM used more optical bands (which may
capture more detailed features of the complex coastal waters in the model) and also
considered some geographical features (represented by water depth); (2) the statistically
based GAM algorithm might be less susceptible to the R, errors than the optical
response based OC3M and GSMOT1 algorithms; (3) the GAM can eliminate some of biases
originate from the improper atmospheric correction in R,; (4) the GAM algorithm can
better accommodate the effect of suspended sediments on chl-a estimation in turbid
coastal waters.

In future studies, to further improve the performance of GAM algorithm, the following
schemes could be considered. First, the standard MODIS R, data used in the GAM may
have errors resulting from the failure of the standard-NIR atmospheric correction in the
BYS (Siegel et al. 2000; Wang 2007; Wang, Tang, and Shi 2007). Hence, an accurate R,
with shortwave infrared atmospheric correction may improve the accuracy of the GAM
algorithm. Second, the GAM in this study only used visible band R, in the model
development to make a comparison between standard algorithms (OC3M and GSM)
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and the GAM algorithm. However, some of the previous studies suggested that the band
ratios and/or other band combinations in the model can improved the retrieved accu-
racy (O'Reilly et al. 2000; Siswanto et al. 2011; Hu, Lee, and Franz 2012); thus, it is
proposed that some new selections and combinations of bands might be used to
improve the performance of the GAM algorithm.

5. Conclusion

In this study, a novel statistical algorithm for satellite-derived chl-a was established
based on the GAM using in situ measured chl-a and standard remote-sensing reflec-
tance at available MODIS visible bands. The accuracy of the GAM and the global
standard chl-a algorithms (OC3M and GSMO01) were evaluated and compared using
the in situ measured chl-a collected from five independent cruises over the BYS. The
OC3M and GSMO1 algorithms present poor performance, as indicated by the large
biases in absolute values (MAPD is 222.27% and 118.08%, for OC3M and GSMO1,
respectively) and the low correlation in relative patterns (R? is 0.25 and 0.07, for
OC3M and GSMO1, respectively). Hence, the standard chl-a products produced by
global standard chl-a algorithms must be used carefully when investigating chl-a
features in the BYS. The GAM algorithm produced a superior performance in estimat-
ing the chl-a concentrations in the BYS when compared to the standard OC3M and
GSMO1 algorithms. The MAPD and R? calculated from the GAM derived and in situ
measured chl-a are 39.96% and 0.67, respectively. We also indicate how, in a future
study, the GAM algorithm, which is an effective method for deriving accurate chl-a
concentration from the MODIS satellite reflectance in the BYS can be further devel-
oped to improve its performance.
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